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A level-set algorithm for tracking discontinuities in hyperbolic conservation laws
is presented. The algorithm uses a simple finite difference approach, analogous to
the method of lines scheme presented in C.-W. Shu and S. Osher (1@&8nput.
Phys.77, 439). The zero of a level-set function is used to specify the location of the
discontinuity. Since a level-set function is used to describe the front location, no extra
data structures are needed to keep track of the location of the discontinuity. Also,
two solution states are used at all computational nodes, one corresponding to the
“real” state, and one corresponding to a “ghost node” state, analogous to the “Ghost
Fluid Method” of R. P. Fedkivet al.(1999,J. Comput. physl54, 459). High-order
pointwise convergence is demonstrated for linear and nonlinear conservation laws,
even at discontinuities and in multiple dimensions. The solutions are compared to
standard high-order shock-capturing schemes. This paper focuses on scalar conser-
vation laws. An example is given for shock tracking in the one-dimensional Euler
equations. Level-set tracking for systems of conservation laws in multidimensions
will be presented in future work.
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1. INTRODUCTION

While high-order shock-capturing schemes have proven to be invaluable tools in s
ing hyperbolic conservation laws, they generally do not converge at a high-order in
presence of discontinuities. Typically, there will be a few “intermediate” points within
numerical shock profile. The state at these “intermediate” points are in error @(BHn
amount, causingi; convergence to be at best first-order accuratelLapdonvergence to be
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zeroth-order accurate. These errors are even worse in the case of a linear discontinuity |
ally less than first orderin the; norm), since the the number of intermediate points typically
grows with time (an exception would be a scheme that employs artificial compression,
example [29]).

For scalar equations, high-order rates of convergence can be achieved if one mea:
convergence at a finite distance away from the location of discontinuities; for examples
[16, 26]. This is due to the fact that the characteristics of a scalar hyperbolic equation \
either run in parallel to the discontinuity (linear) or travel into the discontinuity (nonlinear
So, it is expected thaD(1) errors near a discontinuity will not effect the solution a finite
distance away from the discontinuity under mesh refinement.

For nonlinear systems of conservation laws, there will be information that passes thro
a shock wave, and typically there will be a loss of high-order convergenceawagrirom
discontinuities [7]. These errors also show up as “noise” in the non-shock characteri
fields. Thisis observed in slowly moving shock waves [1, 22, 23]. This “noise” will typicall
limit the rate of convergence, even a finite distance away from shock waves. As pointed
in [1], there may be no way of eliminating this noise without using subcell resolution
tracking [3, 9, 14].

This paper is devoted to presenting a level-set technique [20] for tracking linear &
nonlinear discontinuities for scalar conservation laws. The algorithm is based on a met
of lines, finite difference framework. Since a level-set formulation is used to denote t
location of the discontinuity, there is no extra front logic required (i.e., no points to track
1-D, or curves in 2-D). All variables are located numerically on a uniform Cartesian gr
and are updated with standard method of lines, essentially nonoscillatory (ENO) scher

The O(1) errors introduced by most schemes can be attributed to interpolating acr
a discontinuity. It will be shown that the present algorithm is similar to Harten’s subce
resolution technique [9] and Mao’s treatment of discontinuties [17—19], in that this algoritt
does not interpolate across a discontinuity, and the difference algorithm always “see:
continuous solution, even near discontinuities. Harten achieves this by replacing a stan
interpolation scheme, in cells that contain a discontinuity, with one that extrapolates i
conservative manner from smooth regions of the solution. Mao’s method is similar but |
exactly conservative. Although Harten’s subcell method works quite well in one dimensic
there seems to be no easy way to extend it to multidimensional problems, or to proble
involving nonlinear discontinuities (shocks) [27]. Mao’s work has been extended to tv
dimensions, but at the cost of complexity in dealing with “critical intervals” (numerical cell
that contain a discontinuity). The main features of the present work are as follows. 1. Lin
and nonlinear discontinuities can be treated. 2. Multidimensional problems are relativ
straightforward to implement (the high-order 2-D Burgers’ examples in Section 4 requ
only a few hundred lines of code). 3. Conservation is achieved under mesh refinement.
scheme has conservation errors of the same order as the truncation errors but still conve
to the proper weak solution. 4. The zero of a level-set function is used to specify the locat
of the discontinuity, and thus one must know the initial location of any discontinuities
initialize the level-set function; no discontinuity detectors are used, and any shocks that fc
later in time, away from the zero of the level-set function, will be captured. 5. Nonconvi
flux functions are not treated, since a single jump (even in a scalar equation) can resu
multiple discontinuities [13].

It should be noted that the use of multiple solution states (say one “real” and ©
“ghost” state) is similar to most conventional front-tracking algorithms near a discontinui
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Typically front tracking requires a cell which contains a discontinuity to have two conste
states, with some geometry information to achieve subcell resolution. A notable examp
presented in Charrier and Tessieras [4], where the authors formulate a 1-D scalar in te
of two scalar equations separated by a single shock, whose evolution is governed by
shock jump condition. Again, here the geometry of the front is represented by the zer
a level-set function.

The outline of the paper is as follows. The mathematical formulation is presented
Section 2. Section 3 describes the fifth-order numerical implementation. In Section
examples are presented to demonstrate the high rates of convergence that are act
by the level-set tracking method, even near discontinuities. And finally, Section 5 discus
issues of efficiency.

2. MATHEMATICAL FORMULATION

2.1. Shock Jump Condition

Here, we present the mathematical formulation of the level-set tracking method for sc
conservation laws. We wish to solve the scalar conservation law

ur + f(u)x = 0. 1)

Equation (1) is hyperbolic and admits discontinuous solutions. Depending on the forrr
f (u), these discontinuities may be linear or nonlinear. Of particular interest is the form
lation of a numerical method that treats the propagation of these discontinuities accura
Shock waves, whene is discontinuous, are of greatest importance. Other discontinuitie
such as derivatives af in the case of rarefaction corners, are also important, but shoc
capturing schemes already typically converge at second order in therm and first order
in the L., norm in these cases (an exception would be the creation of a self-similar raref
tion wave; see [5, 25]). Here, a method for dealing with linear and nonlinear discontinuit
in u is presented.

It is well known that a shock will travel at a speed that depends, in general, on the va
of u on both sides of the discontinuity as well as the flux functiéy). For a scalar
conservation law, the shock speed is given by

o [fw]  fu)— fu)
T T T

&)

wherevu, is the value ofi just to the right of the shock wave, andis the value ofi just to
the left of the shock. While Eq. (2) guarantees conservation, it doesn’t necessarily guara
that the weak solution will be the proper viscosity-limiting solution. For the solution to &
a shock wave, the following entropy condition must also be satisfied:

f'(u) >s> f'(u). 3

Note, the standard entropy conditioff(u;) > s > f’(u;), does not admit discontinuities

in linear equations, whereas Eq. (3) does (see [13]). If Eq. (3) is not satisfied, the solu
will be a rarefaction wave. Again, the focus of this paper is on dealing with shock wav
since they introduce the largest numerical errors. Nonconvex flux functions have a sligl
more complicated entropy condition, since both shocks and rarefactions can originate f
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a single discontinuity (see [13] and the references therein). Issues relating to honcor
flux functions are not addressed here.

2.2. Representation

The key idea to avoiding discretizing across discontinuities is to have two solution stat
u; andu,, at all locations, each of which is continuous across the discontinuity. Note tf
this approach is similar to the “Ghost Fluid Method” of [8], where a level-set function,
is used to determine the location of the discontinuity. The real solution state at a poin
selected to be; or u,, depending on the sign of the level-set function at that location.

Denoting the real solution state aswe have

u:{ul’ ff1p>0 @
up, ify <0,

andv is the continuous level-set function, whose zero is located at the discontinuity. T
ghost stateyg, is given by
up, ify <0
Ug = - ()
up, ify >0.

Since this algorithm works with the variableg u,, andy,, and never usasdirectly, all
variables are typically continuous. To make this clear, consider representing the follow
discontinuous function:

cogx), ifx<O
u=-< _ . (6)
sin(x), ifx > 0.
This can be represented by the following u,, andi:
Uz = sin(x) (7)
Uz = COS(X) (8)
¥ =X ©)

Importantly, even thougli is discontinuousu,, uy, andy are all continuous. Clearly,
discretizing continuous functions will yield higher order convergence than using the d
continuous function directly.

2.3. Solution

Here, we describe how to solve Eq. (1) usingu,, andy . For initial conditions, define
ui, Uy, andyr such that Eq. (4) is satisfied at the initial time. Simgeandu, can take on
any value forys < 0 andy > O respectively, and still satisfy Eq. (4), this representatior
is not unique. It will be advantageous to extandandu, smoothly into their respective
“ghost node regions.” The nonuniqueness also extends to the level-set function. Any le
set functionyr, whose zero corresponds to the discontinuity is adequate. Here, the sigl
distance function is usually used to initializegt = 0).
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Clearly, whenyr > 0, we need to solve
(Ut + fUx =0, (10)
sinceu = u; whenys > 0. Likewise, wheny < 0, we need to solve
(Ut + f(Uu2)x =0. (11)

For smoothness, it is desirable to solve Egs. (10) and (11) everywhere. Butsiuge
will be considered a shocked stateugf(u,) whenyr > 0 (¥ < 0), we have to check to see
if uy (up) satisfies the shock entropy condition Eq. (3). Appropriate left and right states
the shock entropy condition can be cast in termsioii,, andy by

ui, ifyx <0
u|={1 s (12)
Up, ifyy >0
uy, if 0
ur={1 "> (13)
Uo, if wx <0
And the shock entropy condition can be recast (for a convex flux function) as
f'(u) > f'(ur). (14)

If ¥ > 0 (¢ <0) and the state, (u;) does not satisfy the shock entropy condition
Eq. (14), we seti, = u; (U1 = Up). This will only affect the smoothness of or u, in their
ghost node states and will locally reduce to a shock-capturing scheme. This will only aff
the accuracy of solution when an initial discontinuity will form a self-similar rarefactior
and not a shock.

Once entropy-satisfying statag andu, have been given, we define the shock speed b
Eq. (2). This shock speed functianwill be determined everywhere, and this speed is use
in the level set equation to propagate the level set functign,

Yt +syx =0. (15)

Importantly, aty = 0, swill be the proper shock speed for the discontinuityirlso, if uy
andu, are both smooth functions ne@r= 0, thens will also be smooth. This is important
numerically, since accuracy will be lostdfis not smooth neay = 0.

So, in summary, we initializei; and u, with smooth functions, and set to be the
signed distance function from the discontinuity location (or some other smooth functi
whose zero corresponds to the initial location of the discontinuity). This satisfies Eq.
at the initial time. Then, making sure that the ghost node states satisfy the shock ent
condition (for all time), solve Egs. (10), (11), and (15) everywhere. The real solutjon,
can be recovered easily by using Eq. (4) anytime the solution state is required.

2.4. Justification

Clearly, the algorithm should work for a linear problem, where the characteristics ¢
parallel to any discontinuity and are also state independent. It is not obvious that the met
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will work for nonlinear problems, where the shock speed is determined by both states,
andus,. In particular, how does the algorithm prevent seemingly arbitrary initial conditior
in the ghost state from polluting the real state? The answer lies in applying the shock entr
condition.

Let'sfirstconsider the case of a single discontinuity in a 1-D nonlinear scalar conservat
law. The equations being solved are (10), (11), and (15), with the shock-entropy condit
(14) constraining the “ghost” solution state.

ProPOSITIONL. The level set functigny, if initially monotonic will remain monotonic.

Proof 1. Taking the partial derivative of (15) w.r.t. the spatial coordinatend replac-
ing ¥ with v yields the PDE for the slope of the level-set function:

vt + Svk + Sv = 0. (16)

Along a characteristic curvé, = & + fé sdr, the above PDE (16) becomes the ODE

dv
 — 17
a - Y (47
whose solution is
7fs,<dr
v=10€ ° , (18)

along the characteristic curve. Soyif > 0 VX (vp < 0VX), thenv > 0Vx, t (v < 0VX, ),
since the exponential term on the right-hand side of (18) is always positive. This conclu
the monotonicity proof.

Now let us consider the evolution of the two solution stateandu,.

ProPOSITION2. Information from the ghost region never reaches the real region.
Proof 2.

Casel:yy > 0. Fromthe previous proof, the entropy condition then becoimes) >
s > f’(up) at any location inx, t. This gives the desired property that characteristics
will travel faster than they (shock) characteristics; i.e., ragl characteristics will travel
from ¢y < 0 through the shock to become characteristics in the ghost region. Likeyise
characteristics will travel slower than the shock; i.e., taatharacteristics will travel from
¥ > 0 through the shock to become characteristics in the ghost region.

CASE2: Y« < 0. This case is handled by the same arguments as above. This conclu
the proof.

Now let us consider the case when there are multiple discontinuities, and thus a n
monotonic level-set function (i.e., the level-set function has more than one zero). There
several questions to ask when such a case arises. First, let us examine the properties
level-set equation.

ProPOSITION3. The level set function will remain nonoscillatory.
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Proof 3.

CASE 1: s, remains bounded. This results from Eq. (18) as well. As long as the exp
nent in (18) is finite, one has a one-to-one mapping of the sign of the slope of the le\
set function to its initial value at a pariculafi.e., along a characteristic). Since the defini-
tion of an oscillation is a change in sign of the slope of a function, it follows that there w
be the same number of oscillationsitit > 0) as there were iy (t = 0).

CASE 2: s, does not remain bounded. This case corresponds to a discontinuity ir
Here, it is not always possible to have a one-to-one mapping of the sign of the slope of
level-set function. But, importantly, each spatial location later in time will have a uniqt
characteristic which originated = 0 (not every characteristic ait= 0 will exist forever,
since its information can be lost in a shock wave). Therefore, at later times, there will be
most the same number of oscillations that existad=a0. Therefore, the level-set function
will remain nonoscillatory (i.e., no new oscllationsynwill appear fort > 0).

PropPoOsITION4. Near an isolated discontinuifythe information in the ghost region
never reaches the real region.

Proof 4. The proofis basically the same as in Proof 2, except that the entropy conditi
is now only locally in a region ok, t near a discontinuity. Again, either Case 1 or 2 from
Proof 2 will hold for allx, t.

This concludes the section onjustification. Before moving on, the issue of shock collisic
will be addressed. Clearly, by tracking multiple discontinuities, there exists the possibil
that two discontinuities will intersect. See Section 4.2 for an example. The above pro
sitions hold true, so long as there is some finite distance between tracked discontinui
For scalar equations, when two discontinuies (shocks) collide, they coalesce into a si
discontinuity.

For two discontinuities to be represented with a single level-set function, the level-
function would have two zeroes. Say the first shock correspornxigttpand the second to
X2(t). For example one might havle > 0 for x < X1, ¥ < 0 for x; < X < Xp, and finally
¥ > 0forx > xp. If the initial conditions are such that(tj) = X»(t;) (i.e., the two shocks
collide att = t;), then what does the scheme do aft@rFirst let us examine what happens
to the level-set function. At timg, the regiony < 0, corresponding to the state between
the two shocks, vanishes. Aftgrthe realu will be equal tou; for all x. After t;, there will
be captured shock in;, and this final shock will not be tracked at high order, but rathe
captured. So, in conclusion for shock interactions, the algorithm will achieve the corr
solution, but after the shock collision time, the solution will be as accurate as the underly
capturing scheme.

2.5. Extension to Two Dimensions

The above formulation extends easily to multidimensional problems. In particular, t
scalar conservation law in two dimensions is

ur + f(u)x +g(u)y =0. (19)

Again, Eqg. (4) can be used to represent the solution. The sfiatasdu, are evolved
according to

(Ut + fupx+9upy =0 (20)
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(Ut + f(U2)x +9(uz)y = 0; (21)
and the level-set functiony, according to

where

o [(fWw]. [9W)] -

I+
[u] [u]

Again, one needs to make sure that the ghost node state satisfies the shock-en
condition. In multiple dimensions, for a convex flux function, it is sufficient to check if th
characteristics flow into the shock. In two dimensions, the characteristic velocity is giv
by

(23)

c=f'Wwi+dgwj. (24)
Also, the orientation of a shock will be given by

Vv
Vvl

So, the characteristic speeds for the statesndus, in the normal direction are given by

A= (25)

g =n0-(f'unf+4guyj) (26)
C; = A (f'(u)T +g'(u2) ). (27)

For the statesi; andu, to satisfy the shock-entropy condition, the following must be
true:

C, > Cy. (28)

In one dimension, Eq. (28) is equivalent to Eq. (3).

3. DISCRETIZATION

Here, one particular discretization is presented. Numerical results are given in the r
section. Recall that Egs. (10), (11), and (15), along with the shock-entropy condition ne
be discretized. Notice that Egs. (10) and (11) are scalar conservation laws, Eq. (15)
Hamilton—Jacobi-like partial differential equation, and the entropy condition is an algebr:
constraint on the ghost state.

3.1. Grid

A uniform Cartesian grid is used to discretize the domai (Xmin, Xmax), With Ny + 1
equally spaced nodes. The numerical solutionpfs denoted by, (i, n), wherei is the
spatial node number corresponding to the locatios Xmin + i AX, WhereAX = (Xmax—
Xmin)/Nx. And n is the time level corresponding tg = nAt, whereAt = tnq/N;. The
statesu, andy are denoted similarly.
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3.2. Time Integration

An explicit method of lines approach is taken. The results presented here use a tt
order TVD Runge—Kutta time integrator [26]. For example, the solutian ta n) will be
advanced front =t tot =t 1 via

Ur(i, %) = ug(i, n) + AtL(uy(i, n))

Ui, #x) = Zul(i, n) + %AtL(ul(i, *)) (29)

. 1 . 2 2 .
uii,n+1) = U+ Zus (i, ) + éAtL(U1(|» k).

Here, thex andx*x represent intermediate stages of the Runge—Kutta integration. The
dates foru, and are similar. Note that thé () operator corresponds to the spatial flux
differences fou; andus, or derivatives ofjs. These are described in the next section.

3.3. Spatial Discretization

3.3.1. Project ghost nodes into entropy-satisfying stafes described in Section 2.3, it

is necessary to make sure that the ghost node state be an entropy-satisfying state. T
done at the beginning of every Runge—Kutta cycle. As stated in Section 2.3, the ghost r
state is only set to the real state if Eq. (14) in one dimension, or (28) in two dimensions
not satisfied. If the entropy condition is satisfied, then the ghost node state is not modif
The entropy condition is only an algebraic constraint on the ghost node state but reqt
knowledge ofyr, (andyry in two dimensions). These spatial derivatives are obtained k
averaging Eq. (51) and Eg. (52).

3.3.2. Conservative discretization forand w. ForL (uy(i, n)) andL (ux(i, n)) we use
the fifth-order weighted ENO (WENO) scheme of [12], with a local Lax—Friedrichs solve
This scheme is a conservative flux difference method, which has been shown to be st
and yields the proper viscosity-vanishing solution to Eq. (1). The opekator(i, n)) is
given by

L(usG,n) = —(fivee — fiogy2)/Ax, (30)

where fi+1/2 and ﬂ,l/z are numerical approximations to the flux functid(u). In par-
ticular, for the local Lax—Friedrichs scheme, we take

firge= i+ fi,. (31)
where
fir = WENGB(f,t,, fiF, 7, 1, fih) (32)
fia = WENGB(f, g, fiip fipe fis o) (33)
and
t= %(f(ul(i, n)) + aus(i, n)) (34)

1 _ .
T = i(f(ul(l, n)) — aus(i, n)) (35)
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and
a = max(| f'(ur@, n)l, | f'(us + 1, ). (36)

The functionWENGB(a, b, ¢, d, e) is defined next. First, define three interpolated value:

a 7b 1lc
“=3"%6T 6 37
b 5 d
c bd e
©=3%% "5 9
and three indicators of smoothness
IS; = 13(a — 2b + ¢)? + 3(a — 4b + 3c)? (40)
IS, = 13(b — 2¢ + d)? + 3(d — b)? (41)
IS; = 13(c — 2d + €)? + 3(3c — 4d + )? (42)
and take
1
- - 43
T e risy? @)
6
2T e +15,)? “
3
- > 4
NGRS )
and finally
o101 + o202 + a303

WENGh(a, b, c,d, e) = (46)

a1+ a2+ a3

In all computations presented hetex= 10°°, as suggested in [11, 12, 16]. The operator for
u, is the same, withu, replacingu;. Note that, for the linear advection equation, the local
Lax—Friedrichs scheme is equivalent to the standard upwind discretization.

3.3.3. Level-set discretizationFor the level-set Eq. (15), we have the operator

L(y) = —siy, (47)

wheres is the shock speed ank is the numerical approximation tp,. First, the shock
speed at each node locatiatdi, n), is determined fronu; andu, as

f(u(i, m) — f(uz@i, n)

= — vl

(48)

The vy derivative is approximated using a fifth-order WENO scheme for Hamilton
Jacobi Eq. [11] using the following local Lax—Friedrichs method. Define the first-ord
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difference operators as

D~ = ya,n)—yai-1n) (49)
AX
D+ — YA+LMW =yl (50)
AX
The numerical approximations to the spatial derivatiwg are then given by
¥y = WENG(D;_,, Dy, D", D5y, Dip) (51)
¥f = WENGB(D}",,, Dif.;, DI, Di 4, D" ,). (52)
The approximation td (y) at each grid point is given by
. 1 A A - o
L. m) = S0 My + 950 —ay =¥, (53)
where
o =max(s(i —1,n), [s@i, N, s + 1, n))). (54)

4. EXAMPLES

Here, we present solutions to various scalar hyperbolic conservation laws using bott
level-set tracking algorithm and the traditional shock-capturing algorithm. Notice that t
discretization presented in Section 3 will have a truncation err@®@t®) + O(Ax®) in
smooth regions. All computations are performed withoc Ax%3, which effectively yields
a truncation error ofD(AX%) in smooth regions. For all cases, the number of time step
N¢, and number of spatial nodddy, are noted in the tables and figures.

4.1. Linear Advection Equation

The algorithm presented in Sections 2 and 3 is tested on a standard test problem [9
27]. The equation to be solved is the linear advection equation

Ui + Uy = 0, (55)

with periodic boundary conditions at= +1 and subject to the initial conditions

2x+1) — Esin(3r(x+3)), —1<x<-—3
(- BsinErix- 1), —hex<

u= 2 sin(27 (3 —x)), Tax<3 (56)
sin(zx (x - ).
2x—1) — £sin(3r(x—3)), 2<x<Ll

Notice that this initial condition has discontinuitiesat —3, x = 1, andx = 2. Also,
there is a discontinuity in derivative at= % (see Fig. 1). This function is represented by
Eq. (4) with
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T T T
1 - —
0.5 B
0 - ]
-0.5 B
1k _
| | |
-1 -0.5 0 0.5 1
FIG. 1. Plot of initial conditions corresponding to Eq. (56).
2x+1) — isin(3r(x+32)), -1<x<-%
up = sin(2r (3 — x)), —1<ox<?2 (57)
2x—1) —isin(3r(x—1)), 3<x<1
sin(2r (x — %)), “l<x<-2
2
=4 —(x—3)sin(3r(x - 3)°), -2<x<3% (58)
sin(2r (x — 3)), T<x<1
X+%, -1<X< —%
X—3, —2<x<-%
Y= X—%, —%<X<% (59)
—X 4+ é, % < X< %
X — g, % <x<1

Althoughu; andus; are also discontinuous ardis discontinuous in derivative, they are all
C. at the true discontinuity locations af And since most shock-capturing schemes will
be convergent away from the discontinuities (at least in a scalar problem), it is expec
that using Eq. (4) and operating on, u,, andy will be more accurate than discretizing
u directly. This is confirmed numerically. At= 2 with N, time steps, the error in the
numerical solution using the discrdte andL ,, norms is measured. These norms measur
the pointwise convergence of the numerical solution to the exact solution (all points
the numerical solution are included, not just the points away from discontinuities). T
errors are denoted bl¢; and E.,, and the order at which they converge are denoted b
R; and R, respectively. Also, a subscriptST indicates the level-set tracking algorithm,
and SC indicates the WENOS5 shock-capturing algorithm (see Table I). Notice that tl
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TABLE |
Numerical Accuracy for 1D Linear Advection

Ny N Er-Lst Ri-tst Ex-tst Reoist Ei-sc Ri-sc
61 75 7.24e-3 3.46e-2 2.37e-1
121 235 3.32e-4 4.52 1.64e-3 4.40 1.18e-1 1.01
241 740 1.04e-5 4.99 6.58e-5 4.64 6.31e-:2  0.90
481 2340 2.91e-7 5.16 2.90e-6 4.51 3.47e-2  0.86
961 7425  9.58e-9 4.93 1.54e-7 4.23 1.93e-2 0.85
1921 23555 2.36e-10 5.34 3.51e-9 5.46 1.08e-2 0.84

425

level-set tracking algorithm converges at fifth order in both theand L., norms. The
standard shock-capturing algorithm converges at rougfydsder in theL; norm. This

is commensurate with the notion that a captured linear discontinuity will smear at a r
, Wherer is the order of the scheme [6]. THe,, error for the

proportional toN "

capturing was roughly constant and equal @ the maximum jump iru, as expected.
Figure 2 shows the solution of the WENOS5 shock-capturing algorithm, and Fig. 3 sho
the solution using the WENOS level-set tracking algorithm. Notice that this is the rougt
the same resolution used in [9], with comparable results. Importantly, the level-set track
algorithm maintains a perfect discontinuity in while achieving high-order pointwise

convergence.

4.2. Burgers’ Equation

Here, the level-set tracking algorithm is tested on the nonlinear Burgers’ equation

u?
Ut + (7

)

-1

-0.5

0.5

1

(60)

FIG. 2. Plot of WENOS5 shock-capturing solutiontat= 2 with N, = 61 (<) and exact solution (solid line).
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0.5

-0.5

-1 -0.5 0 0.5 1

FIG. 3. Plot of WENOS level-set tracking solution = 2 with N, = 61 (&) and exact solution (solid line).
with periodic boundary conditions at= 0 andx = 1 subject to the initial conditions

U= { 2(1+c082mX), 5 <X <3 (62)

1+ sin2rx), otherwise

Notice that this initial condition has discontinuitiesxat= 1 andx = % (see Fig. 4). This
function is represented by Eq. (4) with

1 .
U = > + sin(2r x) (62)
1
U, = 5(1+cos(27rx)) (63)
1.5 i
1 - -
0.5
O [ -
-0.5 - -
| | | |
0 0.2 0.4 0.6 0.8 1

FIG. 4. Plot of initial conditions corresponding to Eq. (61).
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TABLE Il
Numerical Accuracy for Burgers’ Equation

Nx Nt El—LST R1-LST E:x:-LST Roo-LST El—SC Rl—SC

40 15 1.84e-4 1.09e-3 1.48e-2
80 50 8.16e-6 4.49 6.70e-5 4.03 7.84e-3  0.92
160 150 1.67e-7 5.61 9.15e-6 2.87 3.43e-3  1.19
320 480 9.40e-9 4.15 6.53e-7 3.81 1.47e-3 122
640 1525 2.56e-10 5.20 2.48e-8 4.72 7.63e-4  0.95
1280 4840 4.72e-12 5.76 2.70e-10 6.52 2.76e-4  1.47

= NI

, 0<x<

I<x< (64)

2
Again,u; andu, are also discontinuous anydis discontinuous in derivative, but they are all
C.. atthe true discontinuity locations of TheL ; andL ., errors and rates of convergence,
R; and R, are measured at= 0.2. These are measured by comparing with a numeric:
solution using twice as fine of a grid; thus we measure the pointwise self converge
of the solution. Fifth-order convergence in both theandL ., norm is achieved for the
level-set tracking algorithm, while first-order convergence is achieved ih theorm for
the capturing scheme (see Table IlI). Line plots at0.2 are shown for both the capturing
scheme (Fig. 5) and the level-set tracking scheme (Fig. 6).

It is interesting to run the problem further in time, since at 0.369 the two shocks
collide. At this time, they < O region disappears, and the algorithm then captures tt
remaining shock. See Fig. 7 for a contour plotjafx, t) = 0. Even in this case, the level-
set tracking scheme achieves the correct solution, but 8fe0.369, it reduces back to
a capturing scheme (see Fig. 8). It would be interesting to see if using two level s

and three solution states could accurately track the merging of two tracked shocks
one.

! ! ! !
0 0.2 0.4 0.6 0.8 1

FIG. 5. Plot of WENO5 shock-capturing solution at= 0.2 with N, = 40 () and converged level-set
tracking solution withN, = 2560 (solid line).
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0.5 - 4

-0.5 - h
I I I I
0 0.2 0.4 0.6 0.8 1

FIG. 6. Plot of WENOS5 level-set tracking solution &t= 0.2 with N, = 40 (©) and converged level-set
tracking solution withN, = 2560 (solid line).

4.3. Two-Dimensional Burgers’ Equation

Here, a nonlinear two-dimensional test is conducted. The equation to be solved is
two-dimensional Burgers’ equation

u? u?
wr(g)+ (%) =0 )

with periodic boundary conditions at= 0,x = 1,y = 0, andy = 1, subject to the initial
conditions

s(1+cog2r(x+a)), if§<x+a<3}
u= (66)
14 sin@r(x +a)), otherwise
0.5
04
y>0
~ 02
<0
01 v
0.0 | | | |
0.0 0.2 0.4 0.6 0.8 1.0

X

FIG. 7. Contour plot ofyr(x, t) = 0 from the WENOS5 level-set tracking solution wilty = 160.
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1.5 7

-0.5 l l l 1
0 0.2 0.4 0.6 0.8 1

FIG. 8. Plot of WENOS5 level-set tracking solution &t= 0.4 with N, = 40 (&) and converged level-set
tracking solution withN, = 2560 (solid line).

where
a=0.1sin2ry). (67)

Notice thatthisinitial condition has discontinuities along the cuxves% — 0.1sin2ry)
andx = % — 0.1sin2ry). See Fig. 9.
This function is represented by Eq. (4) with
1
up = > + sin2r (X + a)) (68)

Up = %(1 + co2rx (X + a))) (69)

FIG. 9. Surface plot of initial conditions corresponding to Eq. (66).
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TABLE 11l
Numerical Accuracy for 2D Burgers’ Equation

Nx = Ny Nt El—LST Ril-LST E:x:-LST R<><:-LST El—SC Rl—SC

20 5 1.83e-3 8.15e-3 2.89%e-2
40 15 1.77e-4 3.37 1.55e-3 2.39 1.36e-2
80 50 9.72e-6 4.18 1.43e-4 3.44 6.34e-3

160 150 1.73e-7 5.81 5.41e-6 4.72 3.08e-3

1.09
1.10
1.04

1 H 1
v = 3— (x+a), ifx+a<;

x+a—2%, otherwise

(70)

At 't = 0.1 with N, time steps, the error in the numerical solution using the disdrete
and L., norms is measured (see Table IlI). Notice that the level-set tracking algorith
converges at fifth order in both thg andL ., norms. Again, the standard shock-capturing
algorithm converges at first order in thg norm. Figure 10 shows a surface plot of the
solution of the WENO5 shock-capturing algorithm, and Fig. 11 shows the solution usi
the WENO?S level-set tracking algorithm. Figure 12 shows a line plot of the shock-capturi
solution at = 0.1 aty = 1/2. Figure 13 shows a line plot of the level-set tracking solutior
att = 0.1 aty = 1/2. As in Example 4.2, if this problem is solved later in time, the two

shocks merge.

4.4. Two-Dimensional Burgers’ Equation

Here, another two-dimensional Burgers' test is conducted, again with periodic bound

conditions aix = 0,x = 1,y = 0, andy = 1. The initial conditions are

(3)°

U= {1’ if <X_%)2+<y_%)2<
B 0, otherwise

7
o |
1.5 v-..-‘-."-‘,
e\
S e
1.0 \~ 77
S 7
0.5 S
Z
0.0 2z
. 7777
T2 ]
-0.5 AT §~...-..:"iii:”:’:"‘”:ii’:“‘”’“ 0
- 77 -
LN T

7 t‘,’,“

W
777

FIG. 10. Surface plot of WENO5 shock-capturing solutiort a 0.1 with N, = N, = 40.

(71)
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FIG. 11. Surface plot of WENOS5 level-set tracking solutiortat 0.1 with N, = N, = 40.

Notice that this initial condition is discontinuous along a circle of racgusentered at
(2. 3). See Fig. 14.

This function is represented by Eq. (4) with

u=1 (72)

u,=0 (73)

SR R

-1 I I I
0 0.2 0.4 0.6 0.8

1

FIG.12. Plotof WENO5 shock-capturing solutionyat= 0.5, t = 0.1 with N, = N, = 40 (®) and converged
level-set tracking solution withN, = N, = 320 (solid line).
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-1 ! L ! L
0 0.2 0.4 0.6 0.8 1

FIG. 13. Plot of WENOS level-set tracking solution gt= 0.5, t = 0.1 with N, = N, = 40 () and conver-
ged level-set tracking solution with, = N, = 320 (solid line).

Note that the 2-D Burgers’ Eq. (65) can be rewritten in terms of the rotated coordina
n="7 and¢ = ¥X as

u2
Ut + <ﬁ) _o, (75)

which is simply the 1-D Burgers’ equation scaledg. So, the initial conditions (71) will
look like “top-hat” functions in terms af; see Fig. 15 (foE = s;jé)' And, the exact solution
will consist of shock wave at the right discontinuity and a self-similar rarefaction on the le
discontinuity. The rarefaction eventually catches up to the shock wave and subseque
modifies the shock speed.

The numerical solution is integratedtte= 0.2 with Ny = 30 andNy = Ny = 40. Surface
plots for the WENOS shock-capturing and level-set tracking algorithms are given in Figs.
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£ s ==
TSNS S SO SCSOSSSAR S S
e S S SISO SIS
SRRSO S SIS SRS
e e

SN SN ST

SO S

e

-
Soooo]
s
SSeToT
e
=
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X
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e e e Vo
e
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FIG. 14. Surface plot of initial conditions corresponding to Eq. (71).
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FIG. 15. Plot of initial conditionsu(n, & = 8*732.1 = 0) corresponding to Eq. (71).
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and 17, respectively. Notice that the tracking algorithm has a sharp jumgritthe “front”

of the circle where a shock forms, while the capturing scheme has a couple of intermec
points along the shock. Also, the rarefaction portion of the solutions are nearly identi

between the two algorithms. This is expected, since enforcing the entropy conditiertat
givesu; = u, forn < %2 in the tracking scheme. So, in this region, the level cufve 0
plays little role, sincei; = u, (which is also the same asin the capturing scheme). Line

plots ofu(n, & =

front. The level-set function) (n, £ =

} t = 0.2) are givenin Figs. 18 and 19 for each method, along with th
exact solution. Notice that the level-set tracking algorithm is very accurate near the sh
‘} t = 0.2), is plotted in Fig. 20. Notice that there

are two zeroes, one corresponding to the right-going shock, and one corresponding t

rarefaction fan. But, again, the zero né&as 2/3 plays little role, sincel; = u; in this

region.

FIG. 16. Surface plot of WENO5 shock-capturing solutiort at 0.2 with N, = N, = 40.
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FIG. 18. Plot of WENO5 shock-capturing solutionft= 8*732 andt = 0.2with N, = N,
solution (solid line).
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= 40 (©) and exact

0.8

0.6

0.4

0.2

LI B e B s B B N LA

PRI NS S AU N U N SRS N SO T B RO

FIG. 19. Plot of WENOS level-set tracking solution at=
exact solution (solid line).

-3
8v2

1.2

andt = 0.2 with N, = N, = 40 (¢) and



LEVEL-SET ALGORITHM 435

0.1

0.05 [ ° o ]

-0.05 |- ]

015 & vy
0.4 0.6 0.8 1 1.2

FIG. 20. Plot of level-set function & = 8*732 andt = 0.2 with N, = N, = 40.

5. EFFICIENCY

As stated earlier, the present scheme takes roughly three times the effort of a s
dard shock-capturing algorithm. So, how can this be viewed as a competitive scheme
one can track all shocks, and maintain high-order convergence, then the method wil
very efficient. The goal of a numerical method should be to reduce the CPU time and
error of the numerical solution. The CPU time of an algorithm is a fairly straightforwat
guantity, say the CPU time per cell update times the number of cells times the numbe
time steps. The error is something that is not only problem depenent but also depen
on the norm in which the error is measured. Examiningltherror norm in the various
examples in this paper reveals that to achieve the same error, a shock-capturing scl
would typically need a much finer grid than the same tracking algorithm. For the exam
in Section 4.3, the capturing solution wily = 160 is still not as accurate as the tracking
solution with Ny = 20. In this case, the capturing algorithm would take roughly 3 ordel
of magnitude more CPU time than the tracking scheme to achieve thelsaeneor. Still,
for problems that do not lend themselves to tracking every last discontinuity at high
der, the tracking scheme will capture any untracked discontinuities and the formal h
order of convergence will be lost. This is seen in the example in Section 4.4, where
rarefaction corners are captured, resulting in a loss of high-order convergence. In tt
cases, it would be beneficial to have a more effecient method. This is probably also
for the case of systems of conservation laws, where it very diffiult to track all discon
nuities. There are several possibilities for a more efficient method. A few are discus
next.

It has been shown by Sethian [24] and others that the level-set equation need onl
updated in a band of points near the zero of the level-set function. This type of update
the level-set function would bring the CPU time of the level-set equation down by a fac
of roughly Ny.

Also, as in the original ghost fluid algorithm, one can extrapolate from the real regi
into the ghost region. Then one needs only to update the real region and a band of poir
the ghost region near the discontinuity.
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Together the two ideas above can be implemented to give a CPU time nearly ident
to the standard capturing schemes. This unfortunately complicates the implementation
may make it more difficult to maintain very high order convergence rates (one would nee
demonstrate high-order “narrow band” methods for level sets, and high-order extrapolal
in the ghost state). Again, these ideas are probably most important in complex proble
such as the Euler equations. Further examination of these ideas will be given elsewhere

6. CONCLUSIONS AND DISCUSSION

A simple level-set algorithm for solving scalar hyperbolic conservation laws is presentt
For scalar problems, high rates of convergence are demonstrated in linear and nonli
problems, even near discontinuities and in multidimensions. Note that this scheme te
roughly three times as many numerical operations and memory as a standard captt
scheme, but the benefit greatly outweighs any extra computational time or storage if
discontinuities can be tracked. Also, this extrapolation-free method can be applied to
original ghost fluid method [8], by initially extrapolating the density, etc., in a smoot
fashion, and only projecting the ghost node states into the proper boundary condition st:
Note that one can also use this algorithm for tracking discontinuous derivatives in Hamiltc
Jacobi equations, with the modification that the “shock” speed will be a function of tt
derivatives of the solution states, since it has been shown [20, 21] that there is a rela
between Hamilton—Jacobi equations and scalar conservation laws.

Work is currently being done to track multidimensional shock fronts in gas dynamics wi
a level-set formulation. The largest difference is that, in a system, there are characteric
that pass through the shock front, and so the boundary treatment must take this into acc
Also, the two states will not be symmetric, as in the scalar case; one state, sejl be
considered a shock state of the other, A simple way to apply the appropriate ghost
region state foru, is to project this ghost region state into an appropriate shock sta
of the unshocked fluidy;. This shock state is determined once one has an approprie
shock speed. The shock speed can be determined from a local Riemann problem.

FIG. 21. Plot of WENOS level-set tracking solution &= 1.8 with N, = N, = 400 () and converged
level-set tracking solution witiN, = N, = 1600 (solid line).
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can be determined exactly (e.g., Godunov’s method), or it can be determined from
approximate method (e.g., Roe’s method). The ghost region;fe not critical, since in
the shock-attached reference framegjs supersonic. Again, one must ensure that hgth
andu, are entropy-satisfying states in their respective ghost regions. Preliminary res
indicate that this method converges to the proper solution, with improved convergel
and accuracy. Figure 21 shows the density field for a level-set tracking algorithm, usin
nondecomposition-based Lax—Friedrichs scheme [15, 28], with a shock speed given f
a Roe averaged + ¢, corresponding to Example 8 and Fig. 14b of [27]. Importantly, not
that there are no “intermediate” shock points near the lead shacka2.4. Again, this
work is investigated in greater detail elsewhere [2].
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